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A universal creep law which incorporates both primary and secondary creep has been used to 
develop a semi-empirical model for stress relaxation. The modelling was performed by 
comparing computer simulated relaxation curves with experimental data. Contrary to most 
models for stress relaxation, the results indicate that relaxation life should be divided into two 
stages, a primary stage with increasing internal stress and a secondary stage during which the 
internal stress falls as the applied stress decreases. 

1. In t roduct ion 
Stress relaxation is frequently expressed mathemat- 
ically through an Arrehnius-type of rate equation [1] 

a = - c o e x p ( - - Q / k T ) e x p l V ( L ~ T a i )  1 (1) 

where a is the applied (remaining) stress, ai the friction 
stress, c a constant including some mathematical par- 
ameters, 0 the density of mobile dislocations, Q the 
activation energy, k Boltzmann's constant, T the 
absolute temperature, and v a quantity called the 
activation energy. If  c, 0 and v are assumed constant 
during a test, and ai is neglected or assumed constant, 
integration of  this equation leads to an expression of 
the following form for a as a function of time t [1] 

a = a 0 - In 1 + 

1 vce (Q 2 v-a°) 
to = ~-~exp k T  I (2) 

where a0 is the applied stress at t = 0. 
Equation 2 predicts a linear relationship between a 

and log time, and references to several investigations 
are given in [1] which have shown that a plot of  a 
against log time after a short initial period turns into 
a straight line. However, the tests described in those 
papers have only been carried out at relatively short 
periods of time. Both the long-range tests performed 
by Hero [1] and the experiments done in this work 
have given a non-linear relationship between a and log 
time. The reason for this may be changes occurring in 
the microstructure of  the specimens during the tests. 
Hero [1] has suggested that the mobile dislocations are 
gradually arrested by obstacles. I f  no dislocation 
multiplication or reactivation takes place, the internal 
stress ai will therefore increase. He suggests that this 
increase is proportional to the strain in the stress 
relaxation process, i.e. that the internal stress varies 
linearly with the decrease in  a. In this respect he 
considers stress relaxation as a primary creep process. 

This is in contradiction to the case described by 
Equation 2 where a kind of steady state creep is 
assumed. In this work the variation in the internal 
stress with the applied (remaining) stress has been 
taken into consideration in a mathematical simulation 
of  stress relaxation. As in the development of  
Equations 1 and 2, we have assumed that stress relax- 
ation is a pure creep phenomenon. Contradictory to 
the former case, however, we have allowed a i to vary 
as a function of time and stress. Both primary and 
secondary creep are included in the mathematical 
model. 

2. General descript ion of the model for 
stress relaxation 

The model is based on an equation for secondary 
creep rate is developed by Evans and Harrison [2] 

~ = B (  a -- ai~ 3'5 (3) 
\ a0.05 / 

where B = 2.5 x 10 -5 sec -~, a is the applied stress, ai 
is the internal friction stress opposing creep, and a0,0s 
is the 0.05% proof  stress. The equation was originally 
developed for iron and nickel alloys, but was suggested 
by the authors to be of  universal validity. In a recent 
work by Solberg and Than  [3] Equation 3 was shown 
to be valid for some aluminium alloys, including 
A1Sil2 (AI-12 wt % Si) which we have used to illustrate 
the present model for stress relaxation. In this model, 
the Evans-Harrison creep equation (Equation 3 above) 
is assumed to be valid for each value of  the remaining 
stress during the relaxation test. The internal stress is 
then the only unknown quantity which must be deter- 
mined to evaluate the strain rate at each stress value. 
The variation in ai during a stress relaxation test is not 
trivial to determine, however. In this model we have 
assumed that ai increases at the beginning of the test, 
just as it does during primary creep. However, after a 
well-defined subgrain structure (characteristic of  
secondary creep) has developed, it is assumed that the 
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internal friction decreases as the applied stress 
decreases. It is assumed that this fall in ~ is associated 
with an increase in the subgrain size. By this procedure 
we use the Evans-Harr ison creep equation to describe 
stress relations as successive primary and secondary 
creep processes. It is true that the equation was orig- 
inally developed for secondary creep. However, in a 
later paper [4] the authors show that the equation is 
valid for initial creep (t = 0) if the internal friction 
stress at this stage is inserted. On this background the 
equation can be used for the whole stress relaxation 

test. 

3. M a t h e m a t i c a l  der ivat ion of an 
equat ion for  stress relaxat ion 

During a stress relaxation test the specimen is strained 
to a strain value et which remains constant during the 
test. At t = 0 st is only the elastic strain eo. As time 
passes the elastic strain is gradually transformed to 
plastic strain, ep. We therefore have 

~t = e e +  ep = constant 

where e v increases with time, resulting in a reduction in 
the applied stress. At each stress level, e e is equal to 
alE, E being the Young's modulus of  elasticity. We 
therefore obtain 

ff 
+ 8p = constant 

which upon derivation with respect to time gives 

1 da 
- -  ~p  

Edt  

Here ~p is the creep rate at each value of the remaining 
stress a. Substituting Equation 3 for ~p gives 

do- (0" --- O'i~ 3"5 
d-T = - -  EB (4) 

\ ao.o5 / 

where a~ = o-~(t, a) is a complicated function of  time 
and stress. Equation 4 gives the slope of the curve of  
stress against time. 

To obtain an expression for the variation of  a with 
time, Equation 4 should have been integrated. How- 
ever, since we will allow a~ to take any complicated 
form, such an integration may be impossible to carry 
out. Equation 4 must therefore be used as it stands, 
and the mathematical simulation of  the stress relax- 
ation process has to be performed numerically by 
means of  a computer. 

4. Model  for  the var iat ion in internal 
stress 

To calculate the remaining stress as a function of" time 
a model for the variation of  a~ during stress relaxation 
must be developed. Following the ideas outlined in the 
previous section, we divide the relaxation process into 
two stages. At t = 0 all dislocations are mobile, and 
the friction force is low. As in creep the dislocations 
will be rearranged, and a higher internal stress will 
build up. At a remaining stress of  ap the dislocation 
rearrangement is thought to be complete. It is 
assumed that the internal stress at this point equals the 
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Figure 1 Creep of ~SV 3001 at 100°C at a stress of 88.8 MPa. End 
of  primary stage at tp = 23 000 sec. 

internal stress during steady state creep at an applied 
stress of  %. This point defines the transition from the 
primary stage to the secondary stage. During the latter 
stage, the dislocations are again assumed to be 
rearranged as the applied stress falls. However, it is 
not likely that the rearrangement develops with the 
same speed as the fall in the applied stress. During the 
secondary stage, the friction force may therefore be 
higher than during steady state creep at corresponding 
stress levels. 

We must first obtain a model for the variation in 0-i 
during the primary stage. Evans and Harrison [4] have 
suggested a method for finding the friction stress at 
t = 0. They extrapolate the 6i against 6 graph so that 
it intersects the ai axis at a = 0. The cr~ value given by 
the point of  intersection is taken to be the friction 
stress at t = 0 during a creep test. By using this 
method a much too high relaxation rate was caF 
culated in the initial stage in the present case, so we 
have chosen another approach which estimates the 
internal stress from primary creep data. The method 
was carried out for the concrete case of  stress relax- 
ation of  ASV 3001 at 100°C and an initial stress of  
88.SMPa. The alloy was delivered by •rdal and 
Sunndal Verk a.s., Norway, and had the composition 
(in wt %) AIM 1.92Si-0.18Fe. 

First, a creep curve for corresponding experimental 
conditions was obtained by means of  an extensiometer 
attached to a specimen of diameter 5 mm and gauge 
length of  40 mm, Fig. 1. The primary creep rate was 
then measured for several points along the creep 
curve, and the corresponding a~ values were calculated 
from Equation 3, assuming that the equation is valid 
for the primary stage. In a log-tog plot of ai against 
time the calculated values turned out to lie along a 
straight line, as shown in Fig. 2. The straight line gives 
the following equation for 6i with respect to time, t 

~ = Ct" (5) 

C = 36.6 MPa, m = 0.08. The expression is valid tilt 
the end of the primary creep stage, t = tp = 
23 000 sec, where ai takes the constant value charac- 
teristic of  the secondary stage. In Fig. 3 this develop- 
ment of  ai is sketched by the upper left curve. The 
right-hand diagram gives the internal stress for second- 
ary creep, o-~, as a function of  applied stress (curve (a)). 
At the creep stress a0 this value is equal to o% Fig. 4 
gives the ai against a curve for secondary creep of 
ASV 3001 at 100°C as determined by Solberg and 
Thon [3]. 

It is now assumed that the creep expression of  

631 



~100 

b 

"d 

F 
c 

- -  1 
0.1 1'0 160 1600 I0000 '~ 

Time (sec) 

Figure 2 The variation of  internal stress with time during 
the primary creep stage of  Fig. 1. 

Equation 5 holds during the first infinitesimal time 
interval dt of  a stress relaxation test which starts at the 
same load 0"o as the creep load. During the time inter- 
val dt the applied stress falls to a value 0"~. For  creep, 
the secondary stage value of  the internal stress corre- 
sponding to this stress is equal to 0"~1, Fig. 3. In the 
next time interval of  the relaxation test, we assume 
that the internal stress increases towards this value, 
and not towards 0-i~0. This is visualized by the next 
upper curve to the left in Fig. 3. This curve is also 
assumed to have a Ct m shape, and we assume that the 
new curve takes the value 0"~i at the same time tp a s  the 
upper curve takes the value 0-i0.s The values C and m are 
determined by the known start and end points of  the 
curve 

m = log[a~l/0-i(t0]/1og[tp/tl] 

and 

C = 0 - i ( t l ) / t T .  

This sequence is now repeated, so at time t2 = 2dt the 
stress has fallen to 0-2, characterized by an internal 
creep stress of  a~2o The internal stress grows towards 
this value during the next time interval dt, and so on. 
Each new curve for the increase in 0"i is assumed to 
have a Ct m shape. The resulting internal stress values 
are drawn with a heavy line. 

It  is assumed that the pr imary stage of the stress 
relaxation test has the same duration tp as during the 
creep test. At this time the applied stress has fallen to 
o-p, and the internal stress has reached the value 0-isv 
which characterizes the secondary creep stage at stress 
%. F rom now on the internal stress during stress 
relaxation will fall simultaneously with the fall in 
applied stress. In an ideal case the values for the 
internal stress would follow the 0-[ against 0- curve to 
the right in Fig. 3 (Curve (a)). However, the internal 

dislocation structure in a real material will need some 
time to adjust to a new stress state, so the internal stress 
during the rest of  the relaxation test is likely to lie 
above the 0"~ graph in Fig. 3. This is indicated by the 
line (b) which forks out from the 0"~ graph at the stress 
value 0-p. Of  course, it is impossible to know the exact 
shape of this line. For the sake of  simplicity, we have 
in our calculations assumed that the line is straight, 
and that it crosses the 0"~-axis at a value 0-io~ which has 
to be guessed. The corresponding fall in 0-i with time 
is indicated in the diagram to the left in Fig. 3. 

5. C a l c u l a t i o n s  
The numerical calculations were carried out by choos- 
ing time intervals dt of  1 sec. During each time interval 
the internal stress was given a constant value equal to 
the average of  the values at the beginning and end of 
the interval. The new stress value at the end of each 
time interval was calculated through three successive 
steps. This procedure is illustrated for the first time 
interval in Fig. 5. The exact mathematical  relaxation 
curve is given by the solid line, the initial stress being 
a0. The slope of  the curve is given by Equation 4, 
where a during the first second is approximated by the 
average value 0-iav for t = 0 and = 1 sec in Equation 
5. This gives the following approximate value for the 
stress after 1 see 

( ; '  a~ = a o -  E B  a o -  0-i~ x l sec  
0"0.05 , /  

= 0-0 - -  A(0"0 - -  0"iav) 3"5 × l sec 

This value lies below the true curve as shown in Fig. 
5. We now take the average stress value 
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Figure 3 A model for the variation of  the 
friction stress with time during stress 
relaxation. ( a ) a  i for secondary creep, 
(b) linear reduction of a i during secondary 
stress relaxation and (c) apparently correct 
a i for secondary stress relaxation. 
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Figure 4 Friction stress as a function of  applied stress for &SV 3001. 

which we put into Equation 4 and calculate a new 
stress value 

a~' = a 0 - A(o-~ - o-i,03s x l sec 

which lies above the true mathematical curve. The 
average value 

~o - a~' // 
O-av 

2 

is then put into Equation 4, giving a new stress value 

0"~// = O" 0 - -  A(O'av - -  O'iav) 3"5 X 1 SCC 

which lies below the true curve. Finally, the stress after 
1 sec is set equal to 

# H 

o" 1 + 02 

2 

This value lies slightly above the true value. This 
sequence is then repeated for each time interval of  
1 sec, so the calculated relaxation curve will lie slightly 
above the true mathematical curve. The deviation 
from the exact curve is so small, however, that by 
reducing the number of steps in the approximation 
from three to two, which gives a calculated curve 
slightly below the true one, no essential dif- 
ference in the calculated stress value at the end of  the 
test (106 sec) is obtained. 

Figs. 6 and 7 give two calculated relaxation curves 
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Figure 5 Numerical calculation of  the remaining stress after 1 sec. 
The calculation is made through three successive approximations.  

for ASV 3001, using the cr t against ~ relationship given 
in Fig. 4. The temperature was I00°C and the initial 
stress 88.8 MPa. The experimental curve is given by 
the solid line in each diagram, while the calculated 
curves are shown as dashes. The two calculations 
differ in the rate at which the internal stress decreases 
in the secondary stage. The curves are therefore equal 
up to 23 000 sec, the assumed end point of  the primary 
stage. In Fig. 6 the theoretical relaxation curve for an 
ideal case is given, i.e., the internal stress during the 
secondary stage has been assumed to follow the ~r~ 
against a graph in Fig. 3 (i.e., Fig. 4) (~ri~ = 
a~(0) = 3 MPa). It is seen that this results in a much 
too high relaxation rate in the secondary stage, so the 
internal stress has been estimated too low. For  the 
calculated curve in Fig. 7, the a ~  value in Fig. 3 has 
been set equal to 13 MPa, and this reduces the cal- 
culated relaxation rate so that it is much closer to the 
experimental value. The shape of  the calculated curve 
in the secondary stage is slightly wrong, however. 
During the first part of this stage, the relaxation rate 
is lower than the experimental rate, while it is higher 
in the last part. This suggests that the internal stress in 
the secondary stage does not vary linearly with the 
remaining stress as assumed in Fig. 7 and indicated by 
the thin line in the diagram to the right in Fig. 3. The 
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Figure 6 Experimentai and cal- 
culated remaining stress as a func- 
tion of  time for A1Si12 at 100°C, 
( ) experimental, (---)  cal- 
culated ai~ = ~r~(0) = 3 MPa. 
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Figure 7 Experimental and cal- 
culated remaining stress as a fun- 
ction of time for A1Sil 2 at 100 ° C. 
( - - - - )  experimental, (,--) cal- 
culated, at~ = 13MPa. 

actual internal stress seems to lie closer to the ~ 
against o- graph during the first part  of the secondary 
stage and further away from this graph in the last part 
of  the stage, shown by the dotted curve in Fig. 3. No 
attempt at calculating the exact position of  the dotted 
curve has been made since that would only have been 
a curve-fitting exercise which would have given no 
addition information of  interest. 

Of  course, the inaccuracy in the experimental 
internal stress values for the two creep stages affects 
the calculated relaxation curves. Fig. 8 shows that a 
very good correspondence between the experimental 
and calculated curves can be obtained by a slight 
modification of  the a~ against a curve in Fig. 3. The 
calculated curve in Fig. 8 was obtained by changing o-i~0 
from 81.4 MPa to 80.0 MPa and a~(0) from 3.0 MPa to 
7.0 MPa. The value for o-ic o was set equal to 14.0 MPa. 
Within the experimental uncertainty a nearly perfect 
fit can thus be obtained. 

In Figs. 9 and 10 we have plotted the calculated 
values of  the internal stress, as a function of time in 
Fig. 9, and as a function of remaining stress in Fig. 10. 
The solid line in each figure gives the internal stress 
corresponding to the calculated graph in Fig. 7, i.e. the 

slowness of  the dislocation structure in adjusting to 
the decreasing stress is taken into consideration. The 
dotted lines give the internal stress in the secondary 
regime for the ideal case where the dislocation struc- 
ture responds spontaneously to each load reduction. 
As is seen in Fig. 10, the sluggishness of the alloy results 
in internal stress values which are only a little higher 
than the ideal values which correspond to those of 
secondary creep. However, because the dependence of 
the strain rate on (a - ai) is to the power of  3.5, even 
a small increase in ~i has a strong retarding effect on 
the relaxation. The consequence of this is a rather slow 
decrease in internal'stress with time, as shown in Fig. 9. 
The upper graph in Fig. 9 represents the changes in 
internal stress during creep. For  t < tp the graph is 
given by Equation 5. The curve has a knee at the 
transition point between primary and secondary 
creep. The reason for this is probably that Equation 5 
is not exact (ai goes to infinitely with t). However, the 
curves in Fig. 9 give a fairly exact quantitative com- 
parison between the internal stress during creep and 
stress relaxation. It is seen that early in the relaxation 
process the internal stress starts to deviate noticeably 
from the values valid for creep. 
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Figure 8 Experimental and cal- 
culated remaining stress as a fun- 
ction of time for AISil2 at 100°C. 
( ) experimental, (---) cal- 
culated, a~o = 80MPa, C(0)= 
7 MPa, a~® = 14 MPa. 
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Figure 9 In te rna l  stress as a func- 

t ion  of  t ime for creep and  stress 

r e l axa t ion  for A i S i I 2  at  100°C 

wi th  a o = 8 8 . 8 M P a .  ( - - - - )  
stress re laxa t ion ,  a ~  = 13 MPa ;  

( . . . )  stress re laxa t ion ,  ai~ = 

a~(0) = 3 MPa ;  ( - . - )  creep. 

6.  D i s c u s s i o n  
The calculated curve in Fig° 6 fits the experimental 
curve very well in the primary region. Thus, at the 
beginning of the test when the dislocations are 
rearranging themselves they manage to adjust to the 
decreasing load. The reason for this might be the 
relatively low friction force which exists in the initial 
stage. 

However, at the transition between the primary and 
secondary stage, an equilibrium dislocation structure 
has developed, and this structure is inherently more 
stable against a decreasing load. During the secondary 
stage, the internal stress therefore falls less than 
predicted by the internal stress values valid for creep. 
For the examined alloy the secondary internal stress is 
only slightly higher than the values predicted by creep. 
This is seen from Fig. 10, which by the dotted line 
gives the internal against applied stress for secondary 
creep, and by the solid line (t > tp) gives the corre- 
sponding relationship for the calculated curve in Fig. 7. 
At the terminal stress level 58.5MPa, the internal 
stress is only 1.5MPa higher than the value for 
secondary creep. It thus seems that, due to the low 

relaxation rate at higher times (low remaining stress) 
the alloy is given enough time to develop a nearly 
equilibrium dislocation structure. 

In pure aluminium there are fewer obstacles to 
dislocation motion than in A1Sil2. The dislocation 
structure may therefore change more quickly in pure 
aluminium than in the alloy investigated. Pure 
aluminium may therefore be more capable than 
AlSi 12 of producing a dislocation structure which is in 
equilibrium with the instantaneous remaining stress. 
If that is the case, the stress relaxation curve can be 
calculated solely on the basis of creep data. However 
for very complex alloys the dislocation structure may 
change very slowly after a load reduction. The internal 
stress in the secondary stage of stress relaxation may 
then end up way above the corresponding values for 
creep, and creep data will serve as a poor basis for 
stress relaxation calculations. 

7.  C o n c l u s i o n  
A semi-empirical model for stress relaxation has been 
developed by simulating the process mathematically 
by using the Evans-Harrison universal creep 
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Figure 10 In ternal  stress as a func- 
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equation. In this model the relaxation life is divided 
into two stages in analogy with creep. The internal 
stress a~ is treated as a complicated function of remain- 
ing stress and time. In the primary stage, ai is assumed 
to increase as the dislocation structure changes in the 
specimen. At the end of the primary stage, the dis- 
location structure is taken to be fully developed and 
equal to that for creep at the same instantaneous 
stress, giving a corresponding internal stress value. In 
the secondary stage, a reduction in the internal stress 
is assumed to succeed the reduction in the applied 
stress. The model was applied to the stress relaxation 
of AISil2 (ASV 3001) at 100 ° C, and gave a very good 
fit for the primary stage. For  the secondary stage a 
good fit was obtained only if the internal stress was 

assumed to fall less than predicted by creep values for 
the internal stress. This shows that during stress 
relaxation the dislocation structure is not given time 
enough to adjust completely to the falling stress. 
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